Principles of Chemotherapy and Other Agents

OWEN A. O' CONNOR, M.D., Ph.D.

Professor of Medicine and Pharmacology Deputy Director for Clinical Research and Cancer Treatment Director, Division of Hematology & Medical Oncology NYU Cancer Institute NYU Langone Medical Center New York, N.Y.

Principles of Chemotherapy and Other Agents Agenda

- A historical perspective: Cancer in Context
- How does one develop a drug for cancer?
- How can we target the unique biology that makes a cancer cell a cancer cell?
- Examples:
 - Turning genes on and Off
 - Teaching Cancer Cells How to Die
 - Targeting the Molecular Roots of Lymphoma

Fundamental Defects in Cancer Cells Shifting the Balance Between of Survival & Growth

<u>Growth</u>

- Cells grow when they shouldn't the accelerator is always turned-on
- · The breaks to inhibit growth are turned-off

<u>Survival</u>

- Those signals that tell a cell to die when something is not right are turned-off
- Those signals that instruct a cell to survive are always turned-on

DIAGNOSIS HAS EVOLVED FROM EMPHASIS ON THE ORGAN & MORPHOLOG

	$CI - CH_2 - CH_2$				
1854	Synthesized				
1887	Vesicant properties noted: eye, lungs and skin				
1914 - 1945	World War I and II - Agent classified and developed as chemical warfare agent				
1919	Krumbhaar & Krumbhaar note leukopenia, aplasia of the bone marrow, dissolution of lymphoid tissue in autopsies				
1931	Clinical trials show no benefit, excess toxicity				
1942	Auerbach and Robson describe very first evidence of chemical mutagenesis in Drosophila				

NOVEL CHEMOTHERAPY TARGETS & AGENTS

Most Effect Cancer Cell Specific Pathways of Growth and Survival

GENE EXPRESSION

- HDAC Inhibitors
- Proteasome Inhibitors
- Antisense Molecules
- Hypomethylating Agents

SIGNAL TRANSDUCTION

- G-proteins, RAS
- Farnesyl transferase inhibitors
- PKC (β)
- **ONCOGENES**
- bcr-abl

APOPTOSIS

- Oblimersen
 - AT-101
 - ABT-787
 - Anti-TRAIL

CELL CYCLE

• cdk Inhibitors

NEW DERIVATIVES

- Pralatrexate
- Liposomal Preparations

Most Anticancer Drugs Used

Today Broadly

Affect How Cells Divide

TRADITIONAL CHEMOTHERAPY TARGETS Most Effect DNA in a Non-Specific Manner

DNA DAMAGE

• Alkylating Agents **Broadly Modifies DNA**

MITOTIC SPINDLE POISONS

- Vinca alkaloids
- Taxanes Broadly inhibit proteins than cause one cell to become two

DNA SYNTHESIS

- Purine antimetabolites
- Pyrimidine antimetabolites Antifolates

- **Broadly Act as Fraudulent Mimics** of Normal DNA Components
 - Ribonucleotide reductase inhibitors
- DNA polymerase inhibitors Broadly inhibit enzymes necessary for making new DNA

Major Question:

How Can We Affect Tumor Cells More Selectively?

The Answer:

Target That Biology Present in Only the Tumor

THE HALLMARKS OF CANCER

Epigenetics Identical Mice with Variable Hair Color

- DNA methylation
- Histone modifications (Histone code)
- Switches that turn the genes on and off differ slightly

Morgan et al. Nat Genetics 23, 314 (1999)

- · Consistent with cell line data
- 1-4% of genes were significantly altered with the majority of genes down regulated
- · Combined data identified 23 genes that were altered in all patients

Depsipeptide Response in CTCL:

MGCD0103 Clinical Activity in Hodgkin's Lymphoma: Case Study 1

31-Year-old female with extensive prior therapy

Regimen	Best Response
ABVD	PR
XRT	Not Eval
DHAP	PR
Auto SCT	Not Eval
IGEV	Progression
DHAP	Progression
Fludarabine/	
Melphalan	Progression
Allo SCT	Progression
Donor Lymphocy	te Progression
MOPP	Not Eval
ESHAP	Progression
IEV	Progression

Baseline

788 mm

378 mm

Months

Younes, A, et al. ASCO 2007, abstract 8000

Strategies Directed Towards Bcl-2 Inhibition

PHASE I/II TRIAL: FOSTAMATINIB IN RELAPSED/REFRACTORY B-CELL NHL

- Phase I (N=13)
 - DLBCL (N=3), FL (5), MCL (3), CLL/SLL (2)
 - Fostamatinib 200 mg (N=6) or 250 mg (N=7) BID
 - Dose-limiting toxicities: neutropenia, thrombocytopenia, diarrhea
- Phase II (N=68)
 - DLBCL (N=23), FL (21), CLL/SLL (11), MCL (9), LPL (1), MZL (3)
 - 200 mg BID

Response					
Group	Ν	ORR	CR		
DLBCL	23	24%	1		
FL	21	10%	0		
CLL/SLL	11	55%	0		
MCL	9	11%	0		

AE	All Grades	Grade 3/4
Diarrhea	41%	0
Fatigue	41%	0
Neutropenia	31%	18%
Anemia	27%	7%
Thrombocytopenia	24%	3%
Hypertension	22%	6%

Friedberg. Blood, 2010; 115 (13)

THE FUTURE OF DRUG DISCOVERY – A SYSTEMS BIOLOGY APPROACH TO UNDERSTANDING CANCER SIGNALING NETWORKS Reverse Engineering of The B-Cell

FUTURE TRENDS AND OUTLOOK

- We are witness to the greatest renaissance ever in the treatment of cancer
- Understanding cancer biology has directly translated into new opportunities for treatment
- · New therapies unlikely to supplant old
- The Challenge, integrating new agents into the conventional treatment paradigms to improve the results
- What can you do?

ENROLL ON A CLINICAL TRIAL WHERE EVER FEASIBLE

